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Orbital flow around a circular cylinder. Part 1. 
Steady streaming in non-uniform conditions 

By JOHN R. CHAPLIN 
Ocean Engineering Research Centre, Department of Civil Engineering, City University, 

London EClV OHB, UK 

(Received 8 May 1990 and in revised form 5 September 1991) 

This work is concerned with the source of an important component of nonlinear 
loading on a horizontal cylinder beneath waves that is not present in conventional 
diffraction calculations. Earlier measurements (Chaplin 1984 b )  have suggested that 
circulation induced by steady streaming around the cylinder may be responsible for 
loading which in some cases reduces the perceived inertia force by 50%. The present 
work is aimed at studying the steady streaming around a cylinder in general non- 
uniform orbital flow, and determining whether in the particular case of wave-induced 
flow it could be related quantitatively to the loading. 

The steady outer flow has been obtained numerically for cases where the steady 
streaming does not have a reversal, and for cases where a weak reversal is compatible 
with a uniform outer circulation. It is found that the outer circulation is closely 
related to the mean streaming velocity around the cylinder at the outer edge of the 
shear-wave layer. Results for conditions corresponding to previous measurements of 
force on a horizontal cylinder beneath waves suggest that separation, turbulence, 
transient effects and organized three-dimensional instabilities should also be 
considered. 

1. Introduction 
‘Steady streaming’ is the steady flow which is generated in an oscillatory 

boundary layer in conditions when the externally imposed flow over the boundary is 
oscillatory and non-uniform. Many theoretical and experimental investigations from 
Faraday (1831) and Rayleigh (1883) onwards have concentrated on the case of a 
cylinder forced to oscillate with small amplitude along a straight line normal to its 
axis. The non-uniformity of the boundary layer in this case is purely of the ‘standing 
wave’ type, since the motion around the cylinder differs in amplitude but not in 
phase. It is well known that the resulting steady streaming comprises a circulation 
in each quadrant of the fluid, with the fluid elements drawn towards that part of the 
boundary where the motion is tangential, and leaving the boundary where the 
motion is perpendicular. At these points the steady streaming a t  the outer edge of the 
boundary layer undergoes a reversal. Experimental and numerical solutions for this 
case are to  be found, for example, in recent work by Kim & Troesch (1989), who also 
studied cases of steady streaming generated by rectilinear motion of cylinders of 
other cross-sections. Secondary flows generated by circular cylinders undergoing 
various two-dimensional oscillatory motions were considered by Kubo & Kitano 
(1980), Taneda (1980) and Kusukawa, Shimizu & Shinoda (1980). But in these cases 
also, the boundary layers were of the ‘standing wave’ type. 

The case of a cylinder subject to orbital or stirring motion has on the other hand 
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received very little attention. Longuct-Higgins (1970) and Riley (1971) showed that 
for a circular cylinder executing a circular orbital motion in fluid initially at rest (or 
equivalently a stationary cylinder in uniform circular orbital flow), the streaming 
flow a t  infinite time takes the form of an irrotational vortex motion around the 
cylinder. In  this case the non-uniformity of the boundary layer is of the ‘progressive 
wave’ type (since the motion changes only in phase around the cylinder), and the 
steady streaming at the outcr cdge of the boundary layer has no reversals. 

The present work was stimulated by interest in the case of a horizontal cylinder 
beneath waves, aligned with its axis parallel to the wave crests. The limiting case of 
deep-water waves passing over a cylinder whose diameter is very small in comparison 
with the wavelength approaches that of uniform circular orbital flow. But in the 
general case, thr ellipticity of the wave-induced orbital motion, and its non- 
uniformity over the cylinder’s cross-section, ensure that the boundary layer has both 
standing and progressive wave features. When the motion is predominantly orbital, 
i t  is reasonable to expect that  the steady streaming will be dominated by circulation 
around the cylinder. On the other hand when the waves are in shallower water and 
the orbital motion has small ellipticity, reversals in the streaming flow can be 
expected, as in the case of rectilinear motion. In this  paper we are primarily 
concerned with the problem of predicting the circulation around the cylinder in the 
case where the ellipticity is sufficient to prevent reversals in the steady streaming; 
calculations described below permit the limiting condition to be identified. 

Circulation generated by steady streaming around a cylinder in non-uniform 
conditions seems previously to have been studied only by Riley (1978). In  that case, 
the non-uniformity arose not through the nature of the motion (which consisted as 
in Riley 1971 of uniform circular orbital flow), but from the elliptical cross-scctional 
shape of the cylinder. Riley computed two particular cases, cylinder ellipticities of 
0.905 and 0.707, and found that in comparison with the case of a circular cylinder, 
the circulation strengths were increased respectively by about 3 and 39%. By 
analogy with the case of a horizontal circular cylinder beneath waves, it may be 
inferred that an increase in non-uniformity in the ambient flow, associated this time 
with the wave conditions, may similarly give rise to an increase in circulation 
strength. 

Our interest in the circulation generated around a horizontal cylinder beneath 
waves stems from the possibility that it may have a significant effect on the force 
experienced by the cylinder. Experimental results (Chaplin, 1984b) suggest that  the 
magnitude of the lift, generated by the combination of circulation and incident flow, 
may be as much as one-half of that  of the load which ran be attributed to the inviscid 
flow. This is potentially a matter of conccrn in the design of some buoyant offshore 
structures, where viscous effects are traditionally neglected. 

Force measurements on a horizontal cylinder beneath waves (Chaplin 1984b), 
conducted in conditions where separation and vortex shedding are not likely to  be 
important, showed that that part of the loading which could not be attributed to the 
inviscid flow increased in strength generally with the degree of non-uniformity of the 
ambient wave conditions. The purpose of the work describcd bclow is to determine 
whether such changes in the loading could be associated with changes in the strength 
of circulation around the cylinder, as suggested by Riley’s computations for the non- 
circular cylinder. A companion papcr (Chaplin 1992) describes a time-dependent 
Navier-Stokes solution aimed a t  the case of larger amplitude motions, for which the 
boundary-layer approach would riot be appropriate. 

Section 2 below applies Riley’s (1971) approach to the problem of a circular 
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cylinder in more general orbital flow, and $ 3  describes the numerical solution for the 
outer circulation. Results presented in $4 for a horizontal cylinder beneath waves 
provide some support for the hypothesis that  the viscous part of the loading may be 
associated with the calculated circulation strength, but show that other factors must 
also be significant. 

2. Derivation of the stream function 
The definition sketch figure 1 shows the cylinder (radius c )  located at  the origin of 

the polar coordinate system r ,  0. At large distances from the cylinder the flow in the 
( r ,  @-plane conforms, in all respects but for an initially unknown circulation, to some 
given potential flow which is harmonic in time t with frequency w ,  and which in the 
cylinder’s absence would give rise (at t = 0) to a flow in the direction 0 = 0 of 
amplitude U a t  the origin. On the boundary of the cylinder the no-slip condition 
applies. It is assumed that the amplitude of the undisturbed motion a t  the cylinder 
is small in comparison with the radius, so that separation does not occur, and no 
wake is generated. The purpose of this section is to derive the most important parts 
of the stream function for the region surrounding the cylinder. The stream function 
$ is related to the radial and tangential velocity components by 

The structure of the solution and some of the equations will be found in Riley (1971, 
1978) for the cases studied there, but are included below in a general form for a 
cylinder of circular cross-section. 

At this point the problem is non-dimensionalized by normalizing time in terms of 
w ,  lengths with respect to c ,  and velocities with respect to U. The vorticity transport 
equation then becomes 

(2.2) 
apa(v2+) a$a(vz$) €2 

ar ae ae ar } = n,V4$’ 

where 8 = U/wc,  R, = V / w v .  E is related to the Keuleganxarpenter number K ,  used 
in the context of wave loading by K ,  = m, and R, is a Reynolds number appropriate 
to the streaming flow. We follow Riley (1971) in adopting one double expansion for 
$ in an inner region which accommodates the shear-wave layer, whose thickness is 
of order e/Rk, and another for the outer region. The outer asymptote of the inner 
stream function is made to match the inner asymptote of the outer stream function. 
The leading terms of the expansions are of the following form : for the outer region, 

where the component stream functions are generally functions of r , e  and t ,  but (9) 

and (u) superscripts denote respectively the steady and time-dependent parts of 
The corresponding expansion 

y =  Yo+ (;I - Yo,+ ...+ €(Yg+Yg))+€2Y2+€3Y3+ 
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Crest position at I = 0 

FIGURE 1 .  Definition sketch. 

for the inner region makes use of the transformation 

Y = + ( ~ , / 2 c ~ ) ; ,  p = ( r -  1) ( R , / w ) ~ ,  

which leads to the requirement that a t  a given order and frequency the limiting value 
of a+/& as r tends to zero should equal the limiting value of a!P/ap as p tends to 
infinity. 

Substituting (2.3) and (2.4) into (2.2) and extracting terms of zeroth order yields 

a 
= 0, 

a a v 0  - 1a4v0 
at a p 2  2 a.4 . 

- -- -- 

Clearly is available as the irrotational solution to the inviscid flow problem, 
satisfying far-field conditions compatible with the specified ambient flow, and a slip 
condition (resolved by Yo) at  the cylinder's surface. It is assumed that is known 
in the form 

= F ( r ,  0 )  eit. (2.7) 

Here and below a complex expression denotes its real part. It may be shown that the 
general solution to  (2.6), satisfying the matching requirement and the no-slip 
condition at the cylinder, is 

yo = [p++(l-i ) (  e - "-l)lf(@eit, (2.8) 

where 

Extracting next from the expansion of (2.2) tcrms of order (c2/Rs); leads to 

(2.9) 

(2.10) 
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and (2.11) 

Particular solutions for $ol and !Pol are given by Riley (1971). They are not 
developed in the present case since terms of this order are unlikely to  be significant 
in the context of high-Reynolds-number flows. 

At order E the unsteady terms in the expansion of (2.2) are given by 

(2.13) 

(2.14) 

evaluating the right-hand side of (2.13) from (2.8); the prime denotes differentiation 
with respect to  8. Solutions for $fi) and YE) compatible with the boundary 
conditions are 

$g = 0, (2.15) 

2 ap4 at a p 2  

- - - ip e-(l+i)P f(e, f/(@ e2it, 

For the steady part of the stream function a t  order 8, (2.2) gives 

(2.16) 

(2.17) 

- - [ - ipe-(l+i)P + ( 1  - i) (e-2P - e-P cos P)1 f (4  f m  (2.18) 

for the inner region, where the overbar denotes the complex conjugate. Integrating 
(2.18) and using the boundary conditions that aY%/ap must remain bounded as 
p +  00, and aY3/ap = ul(,.,, = 0 on p = 0, gives 

YE) = { (1  + i) e-('+')P + Li e-(l+i)P + i( 1 - i) e-2P + +( 1 - i) e-P cosp ZP 

+ $( 1 + i )  p -Q( 13 + 3i)}f(e) f'(e). (2.19) 

!P$,) is the stream function of the steady streaming, which at  the outer edge of the 
shear-wave layer gives rise to a steady clockwise tangential velocity represented in 
dimcnsionlcss terms by 

Us = :(I + i )  f(0) f'(e). (2.20) 

For the case of a circular cylinder in uniform clockwise circular orbital flow, 
f ( 6 )  = -2ici8, and Us = 3. The outer flow in this case is a clockwise potential 
vortex (as mentioned above), whose dimensionless circulation ro = 6n will be used 
later for reference purposes. 

It is $pi that is our chief concern, since it is the first term that is likely to give rise 
to significant viscosity-induced loading a t  high Reynolds numbers ; the induced 
circulation (whose magnitude is the same for all non-zero values of viscosity) can be 
expected to generate lift through the Magnus effect. 
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Terms in the outer expansion of (2.2) a t  orders 2 and e3 provide respectively 

(2.21) 

(2.22) 
For the uniform orbital flow case 

VZ$.l"d = 0 (2.23) 

satisfies both (2.22) and the inner boundary condition of a steady streaming flow Us 
which is the same at  all points around the cylinder. For non-uniform cases, Riley 
(1978) argued that the form of (2.22) points to the existence of an outer layer whose 
thickness is of order RB. This layer accommodates the transition between the outer 
region in which $3 satisfies (2.23), and the outer limit of the shear-wave layer where 
a$g/ar must match Us.  

For the non-uniform flow case, +g in the outer layer can be found as described in 
the next section through numerical integration of a boundary-layer version of (2.22). 
First it is necessary to  express the right-hand side of (2.22) in terms of the known 
zeroth-order flow F(r ,  6 ) .  The terms in V2$2 can be replaced by integrating (2.21) with 
respect to t ,  and differentiating with respect to 0 and r .  Equation (2.22) then becomes 

A boundary-layer approximation to (2.24) leads to 

Using next the transformation 

(2.26) 

integrating (2.25) with respect to y and putting u = a$/ay, -v = a$/ax leads to the 
boundary-layer equation 

a2u au au au 
ay2 ax ay a x '  +u-+v- = R- -- (2.27) 

where R = -+if(@ f'(e). (2.28) 

Equation (2.27) is to  be compared with equation (29b) of Riley (1978). In the limit 
y = 0, u must match Us, the dimensionless steady streaming at  the outer edge of the 
shear-wave layer, known from (2.20). As y +  co on the other hand, u must tend a t  
infinite time towards a flow associated with a potential vortex motion around the 
cylinder. The strength of the circulation around the cylinder r is at this stage 
unknown but must be determined by use of the boundary condition 

(2.29) 
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As described below, it is found that this condition can be satisfied for just one outer 
limiting value of u, denoted UL. In the case of a non-circular cylinder (Riley 1978), 
14 must vary around the circumfcrencc of the cylinder in order to accommodate the 
distribution of the potential flow associated with given circulation. In  the present 
case however is not a function of x, so that in an unbounded fluid 

r 
u + u I = -  

27t 
as y+co. (2.30) 

3. The numerical solution 
Equation (2.27) was solved for u(x, y )  using a simple numerical scheme similar to 

that proposed by Riley. The method proceeds in the x-direction in a step-by-step 
fashion to obtain by finite differences an approximate solution t o  (2.27) expressed in 
the form 

Adopting the notation u(x = iSx, y =jay) = u ~ , ~ ,  (3.1) may be approximated using 
central differences a t  the point ( i - i ,  j) as 

= 0 (3.2) 
$& - $i-l,i U,-;,j+l -ui-;,j-1 ui i-Ui-l,* - -Rip; ' 

SX 2SY 6X 

where ui-;,, = ; ( U ~ ~ , + U ~ - , , ~ ) ,  etc. 

with $ updated after each iteration by the trapezoidal rule, 
In advancing from station i- 1 to i ,  equation (3.2) is solved iteratively for the ui,j 

# 2 , 0 = 0 ,  #i , j=$i , j - ,+~(ui , j - ,+Ui, i )6y,  j= 1 , 2 . . . J .  (3.3) 

Note that (3.2) has been linearized by using lagged parameters in the second and 
third terms; the superscript * denotes a value from the preceding iteration. On this 
basis (3.2) forms a tri-diagonal system for the unknowns u ~ , ~  and can be formulated 
to incorporate the boundary conditions ui,o = Us, ui,i = U,, both treated as known 
constants. Because of the presence of the nonlinear terms, and the need to  compute 
$ between iterations, the tri-diagonal system must be solved repeatedly a t  each step 
until convergence is achieved. 

The solution is started with assumed values for u ~ , ~ ,  and marches in the x-direction 
around the cylinder repcatcdly until insignificant changes are detected from one 
circuit to the next. The rate of convergence of the solution was improved by using 
an over-relaxation factor of 1.2 on u , , ~  a t  the end of each circuit. For a given ambient 
flow, convergence in this respect may be obtained with any chosen value of U, ; but 
with an arbitrary choice of U ,  the condition (2.29) would not in general be satisfied 
anywhere. It was found however that as U,  approached one particular value, say U ; ,  
aulay at  the outer edge of the domain ( y  = J 6 y )  would tend towards zero 
at all values of x simultaneously. The value of Ul, was found by solving g( U,)  = 0 by 
bisection, where g(U,) represents the converged mean value over x of au/ay a t  
y = J 6y, computed with a particular value of U,. The function g is plotted in figure 2 
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FIGURE 2. The mean (0) and root-mean-square (0 )  values of au/ay around the circumference at 
the outer edge of the computational domain, as functions of the velocity, U, imposed at the 
boundary. Wave-induced non-uniform flow (case I1 as defined in $4) with kc = 0.3 and ellipticity 
0.7. 

in the region of the solution for a particular case, together with grms, the root-mean- 
square value, over x, of at y = J Sy. The fact that  g crosses zero at a point where 
the root-mean-square value is also very close to zero suggests that  for this value of 
U ,  the streaming velocity satisfies (2.29) everywhere, to within the accuracy of the 
computation. 

It was assumed that U; represented the naturally occurring case at infinite time, 
and that the circulation established around the cylinder would be the corresponding 
value of r = 2xU; ; a dimensional circulation of 27cUecU1. The cases presented below 
(and in figure 2 )  were computed wit,h Sx = x/lOO, Sy = 0.06, and J Sy = 12 (i.e. 200 
points in each direction). Convergence tests showcd that the effect of doubling Sx or 
Sy or of halving J Sy was a change in the computed circulation of no more than 1.2 %, 
and generally much less than this. The convergence criterion required that the 
maximum change in u at any point from one circuit to the next should be less than 
1.0 x Computations were carried out on a SUN SPARC station 1,  with a typical 
run-time of 6 min for each case. 

4. Calculation of circulation strength for particular cases 
Numerical results for a circular cylinder in orbital flow are presented below for the 

following cases : 

Case I .  A stationary cylinder in uniform elliptical orbital flow 

cylinder moving around an elliptical path in initially still fluid), 
For uniform elliptical orbital flow in the clockwise direction (equivalent to a 

f ( 6 )  f l ( e )=  4[(1--E2)sin6cos8-iE], 

where E is the ellipticity of the motion. The streaming flow is given by 

Us = 3[( 1 - E 2 )  sin z cos x + E ] ,  (4.1) 
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where x is measured from 6 = in, i.e. clockwise from the top of the cylinder. From 
(4.1) it  may be inferred that for ellipticities above 2/2- 1 ,  the streaming flow will 
have no reversal. 

Case II. A stationary cylinder in wave-induced orbital flow 

If a cylinder beneath waves is submerged by more than about 5 radii, the effect of 
the cylinder on the waves in most respects may be neglected, and the ambient flow 
in its vicinity can be approximated by using the circle theorem (Ogilvie 1963; 
Chaplin 1981). In  this case, 

- 
{ kc sinh 2A cos 6 + sin 26 + i[ kc sin 36 - kc cosh 2A sin 6 - sinh U]}, 2 

f ( 6 )  f ’ ( 6 )  = 

(4.2) 

where A = ks + kc sin 6, the wavelength is 2n/k, and s is the elevation of the cylinder 
above the sea bed. The ellipticity E = tankhks. 

Case III. A stationary cylinder beneath waves 
For the case of a horizontal cylinder submerged beneath waves which are 

propagating in the positive x-direction in deep water, the potential F (including the 
effect of the cylinder on the free surface) may be found from Ogilvie (1963). It follows 
that 

(4.3) 

where em (m = 1,2, ..., M )  and S, are defined in terms of kc and the cylinder’s 
elevation z,, with respect to mean water level, as in Ogilvie (1963). The ellipticity is 
unity. 

In  cases I1 and I11 the fluid is not unbounded. In  view of (2.30), the present 
approach can therefore be applied to these flows only on the basis that  we neglect all 
effects of the fluid boundaries at the free surface and at the bed on the viscosity- 
induced flow. I n  instances when the cylinder is close to the surface or to  the bed this 
simplification may profoundly affect the results, but cases I1 and I11 are included 
here since they can provide an indication of the effects of another essential feature 
of flow induced by waves, namely its non-uniformity. 

The distribution of Us around the cylinder for each type of ambient orbital flow is 
shown in figure 3. In uniform orbital flow (figure 3a) the steady streaming has equal 
maxima a t  6 = in and in. Figure 3 ( b )  shows that the distortion associated with finite 
wavelength is considerable for a value of kc as low as 0.05 (a wavelength-to-diameter 
ratio of about 1/63), and that the steady streaming is much increased over the top 
of the cylinder as its submergence is reduced. A more extreme case is that of 
kc = 0.6 (figure 3 c ) ,  where the steady streaming at the highest part of the cylinder’s 
cross-section is as much as 100 times that at the lowest part. 

Since the outer circulation is driven by the steady streaming, it seems reasonable 
to relate its strength r to the mean value Os of the streaming velocity around the 
cylinder’s circumference. Us is influenced both by the ellipticity of the flow and by 
the degree of its non-uniformity. I n  uniform flow, us increases in proportion to  the 
ellipticity, and figure 4 shows that i t  also increases rapidly with kc when the effect 
of the cylinder on the waves is neglected. The effect of the proximity of the free 
surface is generally to increase the mean streaming flow still further, as shown in 
figure 5.  
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FIGURE 3. Distribution of streaming flow around a circular cylinder. (a) Case I : uniform elliptical 
orbital flow. ( b )  kc = 0.05. Case 11: Wave-induced flow without surface interaction, various 
ellipticities ; case I11 : wave-induced flow with surface interaction, various submergences. (c) As ( b )  
but for kc = 0.6. 
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FIGURE 4. Mean streaming flow around the cylinder’s circumference for conditions in which 
there is no reversal. Case I and case I1 at various values of kc. 
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FIGURE 5.  As for figure 4;  case I1 for circular orbital flow, and case I11 
for various submergences. 

Computed outer circulation strengths are plotted in figure 6 for uniform and wave- 
induced flows, as a function of E for various values of kc. For each case, the symbol 
on the line identifies the ellipticity a t  which the minimum steady streaming Us at the 
outer edge of the shear-wave layer reaches zero. For ellipticities smaller than this, the 
steady streaming reverses over a small region of the cylinder’s surface, though the 
existence of a solution indicates that there is no reversal in the outer flow. 
Ultimately, for still smaller ellipticities, the tri-diagonal system (3.2) failed to 
converge. It was found that in each case the limiting ellipticity a t  which this 
happened (where the line in figure 6 is terminated) corresponded closely to that a t  
which the minimum value of Us-R reached zero. 

Though numerical difficulties might have been expected, solutions with reversed 
steady streaming were obtained without the use of any special techniques. But it 
should be noted that the marching solution carries forward information from all 
points around the cylinder, so that in the region of recirculation the computed flow 
is influenced by the motion both upstream and downstream. I n  the converged 
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FIGURE 6. Outer circulation as a function of ellipticity ; case I and case I1 at  various values of kc. 
The symbol on the line for each case identifies the minimum ellipticity for which there is no reversal 
in the steady streaming. 

3r ~ _ _  
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0 0.5 .O 
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FIGURE 7. Outer circulation referred to the mean steady streaming velocity; case I and case I1 

a t  various values of kc. 

solution the finite-difference equations were satisfied at  all points around the 
cylinder’s circumference. It may be concluded that the occurrence of reversed steady 
streaming does not lead immediately to a major reorganization of the flow, but that 
the recirculation is at first contained within the thickness of the boundary layer. A 
related case was solved by Wang & Shen (1978) with a similar marching technique, 
which was found to  pass without difficulty through a confined region of reversed flow. 
However, if the strength of the reversed flow is increased (in the present case by a 
decrease in ellipticity), a numerical breakdown can be expected where the flow begins 
ultimately to break away from the surface. 

The influence of the degree of non-uniformity in the flow on the circulation is 
largely through its effect on the mean streaming velocity as at  the outer edge of the 
shear-wave layer. Figure 7 shows that when the circulation strength is normalized 
with as it does not depart far from that obtained in uniform orbital elliptical flow. 

Corresponding results for the case when the cylinder is close to the surface are 
given in figures 8 and 9. At the lower values of Ec, the absolute circulation strength 
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FIQURE 8. As for figure 6 ;  case I1 at E = 1 ; case 111 for various submergences. 

0 0.3 
kc 

0.6 

FIGURE 9. As for figure 7 ; case I1 at E = 1 ; case I11 for various submergences. 

increases rapidly as the submergence is decreased, but figure 9 shows that this can 
be attributed almost entirely to  the changes in mean circulation us. 

5. Experimental comparisons 
In  the absence of velocity measurements from which circulation strengths could be 

obtained, we make comparisons between computed circulations and those which 
may be inferred from measurements of the force on a horizontal cylinder beneath 
waves (Chaplin 19843). I n  the analysis of these experiments, the magnitudes of the 
x- and y-components of the force per unit length on the cylinder a t  a frequency of n 
times the wave frequency w were expressed as 

F !$ = x C,,, pc3w2K ," ; F r) = x Cyam pc3w2K 7 .  (5.1) 

The results revealed a strong nonlinear force in the terms CZl3 and C,,, which may be 
interpreted as the Kutta-Joukowski lift arising from circulation around the cylinder. 
In the Appendix i t  is shown that in unsteady non-uniform inviscid flow the lift is 

m m 
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FIQURE 10. Steady streaming velocity distributions for the conditions of case E in table 1 .  

Case Z O / C  kc r e  r 
B -5 0.206 6.5 20.0 
C -3  0.206 11.2 21.7 
D -3  0.365 11.2 22.3 
E -2 0.206 18.0 26.5 
F -2 0.365 19.5 26.6 
G -2 0.570 40.3 28.5 

TABLE 1. Circulations inferred from force measurements (Chaplin 19846) compared with those 
computed using the method of $3  

proportional to  the product of the circulation and the speed of the instantaneous 
undisturbed flow at  the location of the cylinder’s axis. On this basis the force 
coefficients C,,, and C,,, would be associated with circulation re, where 

(5.2) 
A formal determination of CZl3 and G,,, would require the evaluation of terms in 

the stream function a t  higher orders than any obtained in $ 2 .  However, it is clear 
that if the circulation outside a thin layer surrounding the cylinder were uniform, it 
would generate a force whose magnitude would be represented approximately by 
(5.2). Forces on the cylinder also arise through the direct effect of viscosity on normal 
and shear stresses around its circumference. These were given in Chaplin (19843) and 
shown to be insignificant a t  the Reynolds numbers a t  which the experiments were 
carried out. 

For each experimental case, Table 1 compares re with r, the circulation computed 
for the appropriate conditions using the method described in $3.  

The computed distribution of streaming flow in the outer layer around the cylinder 
is plotted for case E in figure 10. This is a case in which there is rather strong non- 
uniformity of the ambient flow across the cylinder’s diameter, as shown by the large 
difference between the strength of steady streaming below and above the cross- 
section. Across the outer layer this non-uniformity is smoothed out in accordance 
with (2.27), to offer to the ambient flow a uniform steady flow which matches that 
due to a potential vortex centred on the cylinder. An indication of the strength of the 

c,., = c,,, = -rep. 
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flow shown in figure 10 is conveyed by the fact that  when the Keulegan4arpenter 
number is around 0.5, the induced velocity is of a magnitude similar to that of the 
wave-induced ambient flow. 

The quantitative agreement between inferred and computed circulations in table 
1 is not good, and probably the most significant result is that in both cases there is 
an increase in strength as the submergence of the cylinder is decreased. As 
demonstrated above, this can be attributed mainly to the increase in steady 
streaming over the top of the cylinder. 

In  the absence of more detailed experimental results, we speculate that the poor 
agreement shown in table 1 may be associated with the following factors: 

(i) Organized three-dimensional instabilities. In the case of rectilinear harmonic 
motion, the two-dimensional flow is disrupted a t  low values of the Reynolds number- 
to-Keulegan4arpenter number ratio by the ‘Honji instability ’ (Honji 1981 ; 
Sarpkaya 1986). It is likely that in a modified form the same mechanism affects the 
generation of steady streaming around a cylinder in orbital flow. 

(ii) The rate of spread of the circulation. The outer flow at radius r becomes steady 
only after a time of order ( r - c ) 2 / v  (Longuet-Higgins 1970). The forbe measurements 
to which we refer were completed after about 16 waves had passed the cylinder from 
the front of the wave train (Chaplin 1984b). Though no systematic change was 
detected over the preceding eight waves, the subsequent convergence to the 
conditions a t  infinite time, as represented in the boundary-layer calculations, may be 
so slow that it is dominated by other factors, such as mass transport generated by 
the waves. 

(iii) Xeparation. The boundary-layer approach also neglects the possibility of 
separation, which would probably influence the outer circulation and the loading. 
Earlier visualizations (Chaplin 1984 a)  did not however reveal any large-scale flow 
structures in the Keulegan-Carpenter number range for which there is a clearly 
defined reduction in loading, apparently due to  circulation. 

(iv) Turbulence. Evidence from measurements in planar oscillatory flow (Sarpkaya 
1986) suggests that  boundary-layer turbulence may have occurred in some of the 
experiments quoted above. Very little is known about steady streaming in turbulent 
conditions, though the results of experiments in waves a t  Reynolds numbers around 
200000 (Chaplin 1988) showed similar reductions in the perceived inertia force. At a 
given Keulegan-Carpenter number the effect was weaker, though it persisted over a 
much greater range. These observations suggest that the process can be significantly 
affected by boundary-layer turbulence. 

6. Conclusions 
The steady circulation around a cylinder in orbital flow is predominantly related 

t o  the mean streaming velocity at the outer edge of the shear-wave layer. The nature 
of the ambient flow has a weaker effect. In  uniform elliptical orbital flow the 
circulation increases as the ellipticity of the flow is reduced from unity; in wave- 
induced flows, it decreases as the wavelength or the submergence is increased. 
Results computed for uniform elliptical orbital flow include cases where a reversal in 
the steady streaming a t  the outer edge of the shear-wave layer is found to be 
compatible with a uniform outer circulation. This computation broke down, 
however, at an ellipticity of about 0.277. 

Computed circulation strengths do not relate well to the nonlinear features of 
previously measured forces on a horizontal cylinder beneath waves, though there is 
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some similarity with respect to  the changes that occur in both cases with cylinder 
submergence. I n  trying to  explain the discrepancies, further attention should be 
given to organized three-dimensional instability, the time-dependent growth of the 
circulation, separation, and turbulence. 

This work was funded by the Department of Energy, as part of the Managed 
Programme of Research into Floating Production Systems. The Programme is 
supported also by the Science and Engineering Research Council and by fourteen 
industrial subscribers. The author acknowledges the benefit of discussions with 
Professor Norman Riley. 

Appendix. Kutta-Joukowski lift in unsteady non-uniform flow 
The purpose of this appendix is to show that the well-known result for thc, lift on a 

cylinder in a steady stream with circulation applies also in the case of unsteady non- 
uniform ambient flow. 

Let f(z) represent the complex potential of an irrotational two-dimensional 
unsteady inviscid flow, whose singularities are all a t  a distance greater than c from 
the origin. On introducing into the flow a circular cylinder of radius c at the origin, 
and a steady circulation r around it, the complex potential becomes 

using the circle theorem (see Milne-Thomson 1968). By Blasius's theorem (extended 
by Milne-Thomson) the x- and y-components of force per unit length on the cylinder 
are given by 

where the integrations are to be taken around the cylinder, or around any larger 
contour which does not introduce any singularities. Evaluating (A 2) by the residue 
theorem, we look for terms involving z-l in the expansion of the right-hand side. In 
the region of the cylinder f ( z )  must be expressible in the form 

f ( z )  = a,+a,x+a,z*+ ... . (A 3) 

Therefore, on substituting (A 1)  into (A 2), the part which involves r is simply 
ipra,. This leads to the result that the effect of the circulation is a force of magnitude 
pVrper  unit length, where V = IaJ, the speed of the instantaneous undisturbed flow 
at  the location of the axis of the cylinder. The direction of the force is normal to this 
flow. 
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